Carbapenem-Resistant Enterobacteriaceae

Andrea Flinchum MPH, BSN, CIC
HAI Coordinator/KDPH
May 7, 2013
Carbapenem-Resistant Enterobacteriaceae (CRE)
Enterobacteriaceae

- Normal human gut flora & environmental organisms
- More than 70 species
- Range of human infections:
 - UTI
 - Wound infections
 - pneumonia
 - bacteremia

- Important cause of healthcare- and community-associated infections
 - Some of the most common organisms encountered in clinical laboratories
Pathogens Reported to National Healthcare Safety Network (NHSN) 2009-2010

<table>
<thead>
<tr>
<th></th>
<th>Overall percentage</th>
<th>CLABSI</th>
<th>CAUTI</th>
<th>VAP</th>
<th>SSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>12% (2)</td>
<td>4%</td>
<td>27%</td>
<td>6%</td>
<td>9%</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>8% (4)</td>
<td>8%</td>
<td>11%</td>
<td>10%</td>
<td>4%</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>8% (5)</td>
<td>4%</td>
<td>11%</td>
<td>17%</td>
<td>6%</td>
</tr>
<tr>
<td>Enterobacter spp.</td>
<td>5% (8)</td>
<td>5%</td>
<td>4%</td>
<td>9%</td>
<td>4%</td>
</tr>
</tbody>
</table>

These three groups of organisms make up about 25% of organisms reported to NHSN Device and Procedure module.

Enterobacteriaceae

- Antibiotic resistance has been a concern for decades
 - β-lactamases
 - Extended-spectrum β-lactamases

- Carbapenems
 - Imipenem, meropenem, doripenem, ertapepnm

- Resistance before 2000, combination of mechanisms
 - 1986-1990 in NNIS 2.3% of Enterobacter NS to imipenem
Isolate collected in 1996 during an ICU surveillance project from NC
Class A β-lactamase
Change in CRE incidence, 2001-2011

<table>
<thead>
<tr>
<th>Organism</th>
<th>2001 Isolates</th>
<th>2001 Tested</th>
<th>2011 Isolates</th>
<th>2011 Tested</th>
<th>2011 Non-susceptible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klebsiella pneumoniae and oxytoca</td>
<td>654</td>
<td>253 (38.7)</td>
<td>1,902</td>
<td>1,312</td>
<td>136 (10.4)</td>
</tr>
<tr>
<td>E. coli</td>
<td>1,424</td>
<td>421 (29.6)</td>
<td>3,626</td>
<td>2,348</td>
<td>24 (1.0)</td>
</tr>
<tr>
<td>Enterobacter aerogenes and cloacae</td>
<td>553</td>
<td>288 (52.1)</td>
<td>1,045</td>
<td>728</td>
<td>26 (3.6)</td>
</tr>
<tr>
<td>Total</td>
<td>2,631</td>
<td>962 (36.6)</td>
<td>6,573</td>
<td>4,388</td>
<td>186 (4.2)</td>
</tr>
</tbody>
</table>
Why are CRE Clinically and Epidemiologically Important?

- Cause infections associated with high mortality rates

Why are CRE Clinically and Epidemiologically Important?

- Resistance is highly transmissible
 - Between organisms – plasmids
 - Between patients
How CRE Take Over

1. Lots of germs, 1 or 2 are CRE

2. Antibiotics kill off good germs

3. CRE grow

4. CRE share genetic defenses to make other bacteria resistant
Why are CRE Clinically and Epidemiologically Important?

- Treatment options are limited
- Pan-resistant strains identified, could be decades before new agents are available to treat
Why are CRE Clinically and Epidemiologically Important?

- Potential for spread into the community
 - *E. coli* common cause of community infection

Isozumi R et al. EID 2012: 1383-4
Kumarasamy K Lancet ID 2010;
Walsh TR Lancet ID 2011:355-362
Lewis JS, et al. Poster Presentation, 49th ICAAC 2009, San Francisco
Tangden T et al. AAC 2010: 3564-3568
Why are CRE Clinically and Epidemiologically Important?

In most areas in the U.S. this organism appears to infrequently identified

Facilities Reporting at least One CRE (CAUTI or CLABSI) to NHSN, First Half of 2012

<table>
<thead>
<tr>
<th>Facility characteristic</th>
<th>Number of facilities with CRE from a CAUTI or CLABSI (2012)</th>
<th>Total facilities performing CAUTI or CLABSI surveillance (2012)</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All acute care hospitals</td>
<td>181</td>
<td>3,918</td>
<td>(4.6)</td>
</tr>
<tr>
<td>Short-stay acute hospital</td>
<td>145</td>
<td>3,716</td>
<td>(3.9)</td>
</tr>
<tr>
<td>Long-term acute care hospital</td>
<td>36</td>
<td>202</td>
<td>(17.8)</td>
</tr>
</tbody>
</table>
CRE Occur in All Settings

Current Healthcare System

- Home Care
- Acute Care Facility
- Outpatient/Ambulatory Facility
- Long Term Care Facility
Inter-Facility Transmission of MDROs (Including CRE)

Figure 3. Patient flow among regional health care facilities. Outbreaks of infection with multidrug-resistant organisms have been found to follow the flow of colonized patients across institutions.

KPC outbreak in Chicago, 2008

- Of 40 KPC patients, only 4 definitively acquired KPC in acute care hospital
- Most (60%) linked to 1 LTACH

CRE Prevalence in LTCF: By Type

Prevalence of CRE Carriage at admission to 4 acute care hospitals

Prabaker K et al. ICHE 2012; 33:1193-1199

0% from those admitted to the community
CRE Toolkit

http://www.cdc.gov/hai/organisms/cre/cre-toolkit/
Interventions

- Core
 - Hand hygiene
 - Contact Precautions
 - HCP education
 - Minimizing device use
 - Patient and Staff cohorting
 - Laboratory notification
 - Antimicrobial stewardship
 - CRE Screening
Contact Precautions

- CP for patients colonized or infected with CRE
- Systems in place to identify patients at readmission
- Education of HCP about use and rationale behind CP
- Adherence monitoring
- Consideration of pre-emptive CP in patients transferred from high-risk settings
Contact Precautions in Long-Term Care

- CP could be modified in these settings:
 - CP should be used for residents with CRE who are at higher risk for transmission
 - Dependent upon HCP for their activities of daily living
 - Ventilator-dependent
 - Incontinent of stool
 - Wounds with drainage that is difficult to control
 - For other residents the requirement for Contact Precautions might be relaxed
 - Standard Precautions should still be observed
Patient and Staff Cohorting

- CRE patients in single rooms (when available)
- Cohorting (even when in single rooms)
- Staff cohorting
- Preference for single rooms should be given to patients at highest risk for transmission such as patients with incontinence, medical devices, or wounds with uncontrolled drainage
CRE Screening

- Used to identify unrecognized CRE colonization among contacts of CRE patients
- Stool, rectal, peri-rectal
- Link to laboratory protocol http://www.cdc.gov/ncidod/dhqp/pdf/ar/Klebsiella_or_E.coli.pdf
- Applicable to both acute and long-term care settings
CRE Screening

- Description of types
 - Screening of epidemiologically linked patients
 - Roommates
 - Patients who shared primary HCP
 - Point prevalence survey
 - Rapid assessment of CRE Prevalence on particular wards/units
 - Might be useful if lab review identifies one or more previously unrecognized CRE patient on a particular unit
Regional Approach to CRE prevention
Surveillance and Definitions

- Facilities/Regions should have an awareness of the prevalence of CRE in their Facility/Region
 - Could concentrate on *Klebsiella* and *E. coli*
 - Could concentrate on those NOT SENSITIVE to a Carbapenem OR add RESISTANT to a third-generation cephalosporin to the definition to increase specificity
 - Ceftiaxone, cefotaxime, ceftazidime
- No easy way right now to check for carbapenemases
 - Many smaller laboratories lack the more sophisticated testing necessary to identify this type of resistance
Things to ask and do when receiving reports of Carbapenem-resistant Enterobacteriaceae infection or colonization in healthcare facilities

- Collect details about the event using the KDPH MDRO EVENT REPORTING FORM
- Determine whether an outbreak is occurring
- Ensure the reporting facility is taking appropriate control measures
- Provide additional educational materials and resources
- Any questions, call 502-564-3261 ext. 4248
Summary

- Carbapenem-resistance among Enterobacteriaceae appears to be increasing
 - Appears to be driven primarily by the emergence of carbapenemases
- Has the potential to spread widely
 - Healthcare and community settings
- Most areas in a position to act to slow emergence
- A regional approach to MDRO prevention is required
 - Public health well-positioned to facilitate and support regional prevention efforts
Resources

- http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6124a3.htm
- http://www.cdc.gov/features/vitalsigns/hai/cre/
- (http://www.cdc.gov/ncidod/dhqp/gl_isolation.html)
- http://www.cdc.gov/handhygiene/
- http://www.cdc.gov/mmwr/preview/mmwrhtml/rfr5210a1.htm
- http://www.cdc.gov/media/dpk/2013/dpk-vs-hai.html
HAI Prevention Program

- Andrea Flinchum, BSN, MPH, CIC
 Andrea.flinchum@ky.gov

- Colleen Bradley, RN
 Colleen.bradley@ky.gov

- Fontaine Sands, DrPH, MSN, CIC
 Fontaine.sands@ky.gov

- Matthew Groenewold, PhD, MSPH
 Matthew.groenewold@ky.gov

- Jared Powell, BA
 Jared.powell@ky.gov
Special Thanks

Alexander Kallen, MD, MPH
Medical Epidemiologist and Outbreak Response Coordinator
Division of Healthcare Quality Promotion
Centers for Disease Control and Prevention
Questions