Disease Name

Methylmalonic acidemia mutase deficiency

Alternate name(s)

Methylmalonic aciduria due to methylmalonic CoA mutase deficiency, Complementation group mut0, Methylmalonyl-CoA mutase

Acronym

MMA

Disease Classification

Organic Acid Disorder

Variants

Yes

Variant name

Vitamin B12 metabolic defect with methylmalonic acidemia and homocystinuria

Symptom onset

Eighty percent of infants become ill during the first week of life and 90% will present by the end of the first month. Infants with the less severe mut- may present later than the first month. A few may remain asymptomatic or present much later in life depending on the residual enzyme activity and the metabolic stressors.

Symptoms

Most common signs and symptoms are lethargy, failure to thrive, recurrent vomiting, dehydration which leads to profound metabolic acidosis, respiratory distress, hypotonia and death if not recognized. Complications of acute episodes can include metabolic stroke, extrapyramidal signs, dystonia and bilateral lucencies of globus pallidus. Survivors may have significant neurological damage. Renal failure may appear during childhood. Clinical spectrum is wide, ranging from fatal neonatal disease to asymptomatic individuals. Patients do not have to have clinical crises in order to have neurological or other organ compromise.

Natural history without treatment

Variable depending on the enzyme defect and the patient. Some will die as a neonate, others will survive with deficits and a few others will remain asymptomatic.

Natural history with treatment

About 60% of patients die within the first year of life and of those that survive, 40% are distinctly developmentally impaired. Age of onset of symptoms can help prognosticate – those with later onset tend to have a more benign course. Liver and liver/kidney transplant are one treatment option. However, liver transplants have significant preoperative risk and there is documentation of neurological problems after transplant despite improved biochemical values. Renal transplants have shown good response with drops in methylmalonic acid levels, normalization of the diet and absence of acute episodes of metabolic decompensation. However, the effect of any type of transplant is limited because the MMA enzyme is in all tissues and the transplants do not affect the levels made in the cerebro-spinal fluid and brain.

Treatment

Protein restricted diet, OH-Cbl injections, carnitine supplementation and oral antibiotic therapy to decrease gut production of propionate. Special medical foods (formula) deficient in methionine, threonine, valine, isoleucine, odd chain fatty acids and cholesterol. Liver transplant and liver/kidney transplant.

Emergency Medical Treatment

See sheet from American College of Medical Genetics (attached) or for more information, go to website: http://www.acmg.net/StaticContent/ACT/C3.pdf

Physical phenotype

Most patients have no obvious dysmorphic features. Some patients, in whom there is known consanguinity, have had associated birth defects, congenital heart defects, hydronephrosis and facial dysmorphisms.

Inheritance

Autosomal recessive

General population incidence

1:48,000

Ethnic differences

None known

Population

N/A

Ethnic incidence

N/A

Enzyme location

Liver, kidneys, cerebrospinal fluid, brain

Enzyme Function

Catalyzes methylmalonyl-CoA to succinyl-CoA

Missing Enzyme

Methylmalonyl-CoA mutase

Metabolite changes

Increased methylmalonic acid in blood and urine.

Prenatal testing

Possible via enzyme assay on amniocytes or CVS.

MS/MS Profile

Elevated C3 propionyl carnitine, elevated C4 DC methylmalonyl carnitine.

OMIM Link

Genetests Link

www.genetests.org

Support Group

Organic Acidemia Association
 www.oaanews.org
Save Babies through Screening Foundation
 www.savebabies.org
Genetic Alliance
 www.geneticalliance.org

OMIM Link

Genetests Link

www.genetests.org

Support Group

Organic Acidemia Association
 www.oaanews.org
Save Babies through Screening Foundation
 www.savebabies.org
Genetic Alliance
 www.geneticalliance.org
Newborn Screening ACT Sheet
[Elevated C3 Acylcarnitine]
Propionic Acidemia and Methylmalonic Acidemia

Differential Diagnosis: Propionic acidemia (PA); Methylmalonic acidemias (MMA) including defects in \(\text{B}_{12} \) synthesis and transport; maternal severe \(\text{B}_{12} \) deficiency.

Condition Description: PA is caused by a defect in propionyl-CoA carboxylase which converts propionyl-CoA to methylmalonyl-CoA. MMA results from a defect in methylmalonyl-CoA mutase which converts methylmalonyl-CoA to succinyl-CoA or from lack of the required \(\text{B}_{12} \) cofactor for methylmalonyl-CoA mutase (cobalamin A, B, C, D, and F).

YOU SHOULD TAKE THE FOLLOWING ACTIONS IMMEDIATELY:

- Contact family to inform them of the newborn screening result and ascertain clinical status (poor feeding, vomiting, lethargy, tachypnea).
- Consult with pediatric metabolic specialist.
- Evaluate the newborn; check urine for ketones and, if elevated or infant is ill, initiate emergency treatment as indicated by metabolic specialist and transport immediately to tertiary center with metabolic specialist.
- Initiate timely confirmatory/diagnostic testing as recommended by specialist.
- Educate family about signs, symptoms and need for urgent treatment of hyperammonemia and metabolic acidosis (poor feeding, vomiting, lethargy, tachypnea).
- Report findings to newborn screening program.

Diagnostic Evaluation: Plasma acylcarnitine confirms the increased C3. Blood amino acid analysis may show increased glycine. Urine organic acid analysis will demonstrate increased metabolites characteristic of propionic acidemia or increased methylmalonic acid characteristic of methylmalonic acidemia. Plasma total homocysteine will be elevated in the cobalamin C, D and F deficiencies. Serum vitamin \(\text{B}_{12} \) may be elevated in the cobalamin disorders.

Clinical Considerations: Patients with PA and severe cases of MMA typically present in the neonate with metabolic ketoacidosis, dehydration, hyperammonemia, ketonuria, vomiting, hypoglycemia, and failure to thrive. Long-term complications are common, early treatment may be lifesaving and continued treatment may be beneficial.

Additional Information:

- Emergency Protocols (New England Consortium of Metabolic Programs)
- PA
- MMA
- Gene Reviews
 - PA (Organic Acidoses Overview)
 - MMA
- Genetics Home Reference
 - PA
 - MMA

Referral (local, state, regional and national):

- Testing
 - PA
 - MMA
- Clinical Services

Disclaimer: This guideline is designed primarily as an educational resource for clinicians to help them provide quality medical care. It should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably desired to obtaining the same results. Reference to this guideline does not necessarily ensure a successful medical outcome. In determining the propriety of any specific procedure or test, the clinician should apply his or her own professional judgment to the specific clinical circumstances presented by the individual patient or patient. Clinicians are encouraged to document the reasons for the use of a particular procedure or test, whether or not it is in accordance with this guideline. Clinicians also are advised to take notice of the date this guideline was adopted, and to consider other recent medical and scientific information that becomes available after that date.

© American College of Medical Genetics, 2010 (Funded in part through MCEP/NSF/ABIG grant #2225C38967)