Cannabis in the Commonwealth

The Basics of Caring for Medical Cannabis Patients

Amber Cann, PharmD, MBA, MS

hello@ambercann.com ambercann.com

Session Objectives

- Describe the endocannabinoid system and how exogenous cannabinoids interact with it to produce pharmaceutical effects.
- Identify the conditions for which cannabis may be recommended in Kentucky.
- Summarize the adverse effects, drug interactions, and contraindications of cannabis-based medicines.

Major Cannabinoids: THC and CBD

Small differences in the chemical structures of THC and CBD change the receptors to which these compounds bind.

Cannabinoids on the Market

Dronabinol

Synthetic THC capsules *MARINOL*

Nabilone

Synthetic THC analog capsules *CESAMET*

Nabixomols

Plant-derived 1:1 THC:CBD oral mucosal spray *SATIVA*

Cannabidiol

Plant-derived oral solution *EPIDIOLEX*

Endocannabinoid System

The ECS is a complex regulatory system that works alongside hormone and neurotransmitter signaling in *every* body system.

Endocannabinoid System

CB1 Receptors

- Brain/CNS
- Reproductive system
- Cardiovascular system
- Skeletal muscle
- GI tract and liver
- Adipose
- Nociceptive neurons

CB2 Receptors

- WBCs
- Tonsils, spleen, thymus
- Brain/CNS

The ECS is a complex regulatory system that works alongside hormone and neurotransmitter signaling in every body system.

Endocannabinoid System

CB1 Receptors

CB2 Receptors

Psychotropic effects Appetite Pain perception

Immune response Inflammation

Routes of Administration

Tinctures - moderate onset time **Gummies** - slow onset time Active metabolite after 1st pass metabolism Suited for long-acting relief of chronic symptoms

Inhalation

Oral

Raw plant material - fast onset

Resins/extracts – high THC content

Ideal for immediate relief of acute symptoms

Routes of Administration

Topical

Currently no reliable vehicle to deliver drug across multiple layers of skin for systemic absorption

Ophthalmic

Similar barriers to topical delivery

Nanoparticle formulations in development

Chronic Pain

is the *most* common condition for which cannabis is recommended, and the most common condition for which patients report using cannabis.

Cancer Pain

is the most common symptom reported among patients in palliative care.

Chronic / Cancer Pain

ECS modulates pain signaling in the CNS in several ways.

- Blocks ascending pain signals to the brain
- Reduces stimulation of descending pain signals from the periphery
- Induces analgesic transmitter release

Qualifying Conditions in KY

- **Cancer** of any stage or type
- Chronic, severe, intractable, OR debilitating pain
- Epilepsy or any other intractable seizure disorder
- Chronic **nausea** or cyclical vomiting syndrome
- PTSD

Multiple studies have demonstrated that adding cannabis-based medicine early in a chemotherapy regimen:

- Lowers opioid dose needed to manage pain
- Minimizes CINV
- Lowers pre-treatment anxiety

Don't wait! Cannabis is not a 'last resort.'

Adverse Effects

Sedation (additive with CNS depressants) Diminished motor coordination Increased appetite

Nausea (at higher THC doses) Paranoia/agitation (at higher THC doses)

Tachycardia Brief spikes in blood pressure

Balancing the CBD:THC ratio in a formulation may mitigate AEs.

Start new patients on 1:1 low THC-dose preparation, then titrate frequency of dosing.

Pregnancy & Lactation

The current consensus is cannabis should be <u>completely avoided</u> during pregnancy & lactation.

The ECS forms in the early stages of fetal development, and neuronal connections flourish during infancy.

Drug Interactions

CYP enzymes are responsible for metabolizing 60-80% of all pharmaceuticals. • Inhibitors delay the metabolism of the target drug

Substances can inhibit, induce, competitively bind, or change the shape of CYP enzymes, potentially changing action of the drugs they metabolize. • **Inducers** enhance the action of the enzyme on the target drug, hastening its metabolism

Drug Interactions

To anticipate potential risks:

- 1. Check a OTC/Rx drug monograph for CYP enzyme info
- 2. Cross reference with the CYP enzymes affected by cannabinoids

Most studies on cannabis CYP interactions are pre-clinical (non-human models), so data is imperfect.

The route of administration significantly changes the likelihood of interactions.

CYP Drug Interactions

melatonin

warfarin,

clopidogrel

interactions are substrate specific may inhibit or

Most likely when CBD/THC is taken along with another

*approx. 30% of all meds

CYP Drug Interactions

2D6

THC/CBD are anxiolytics, often given alongside other psych meds

Terpenes

Limited data suggest some naturallyoccurring terpenes have the ability to modulate effect and enzyme activity

Entourage

Cannabinoids interact with each other, contributing to the "entourage" phenomenon

CBD can inhibit this enzyme at high doses

*opiates, antipsychotics, TCAs, SSRIs, SNRIs, tamoxifen Route of administration will also change the likelihood and/or potency of interactions.

Plants found growing wild may be genetically distinct, but cannabis sold for consumption is a result of decades of hybridization.

https://www.cannaconnection.com/blog/11392-difference-indica-sativa-ruderalis-hybrid-plants

Strain Names are Confusing

Hybrid **Blue Dream** Indica Lemon Cherry Gelato

Sativa

Horchata

Hybrid OG Kush

Hybrid 22 Red

Hybrid

24K Blue Dream

Hybrid

24K Gold

Hybrid 2 Scoops

Hybrid

Hybrid 303 OG Kush

Hybrid 309 Og

Hybrid **33** Bananas

https://weedmaps.com/strains

Chemovars & Chemotypes

- Cannabis is a diverse crop
- Over 100 aromatic and psychoactive compounds
- The cannabinoid and terpene mix creates a distinct *experience*
- Patients and cannabis clinicians need detailed info about a product's components
- Dispensaries and producers should make COAs readily accessible

Copyright © 2013, 2020 BHC Group, LLC. Report protected by a federal copyright registration. PHYTOPRINT® and PHYTOPACT98 are registered trademarks of Nacro Research, LLC. Used under license by SC Labs. This report was generated utilizing patented methods. U.S. Pat. 10,830,780. All rights reserved.

Company Name 1234 Hemp Lane #10 Fort Lauderdale, FL 33062 (999) 999-9999 client email

Certificate Of Analysis

ISO/IEC 17025:2017 Accreditation #103104

Order #: 99999 Order Name: FT - FLOWER 40 - DRIFT INDICA -3.5G LAC Batch #: 99999999 Received: 07/20/2020 Complete: 08/24/2020

Sample Analysis Date/Time: 07/22/2020 09:53:50 Tech: Jazmine Adams (2332) SOP: 400.01 Final weight/volume: 0.19500/40 Sample Prep Date/Time: 07/25/2020 11:30:46 Tech: putri prawita (3359) SOP: 400.01

THC Label Claim

17%

Internal Batch 99999 Batch Number 99999 Date: 07/25/2020

CBD Label Claim

1%

CANNABINOID PROFILE:

Shimadzu Integrated UPLC-PDA

Cannabinoids	LOQ	Dilution	12% moisture	Actual %	Dry weight(%)	mg/g
D9-THC	10 PPM	400	0.484%	0.492%	0.550%	4.921
THCA	10 PPM	400	11.099%	11.283%	12.613%	112.834
CBD	10 PPM	400	N/D	N/D	N/D	N/D
CBDA	20 PPM	400	0.033%	0.034%	0.038%	0.340
CBDV	20 PPM	400	N/D	N/D	N/D	N/D
CBC	10 PPM	400	0.022%	0.022%	0.025%	0.223
CBN	10 PPM	400	N/D	N/D	N/D	N/D
CBG	10 PPM	400	0.022%	0.022%	0.025%	0.220
CBGA	20 PPM	400	0.263%	0.268%	0.299%	2.676
D8-THC	10 PPM	400	0.057%	0.057%	0.064%	0.575
THCV	10 PPM	400	N/D	N/D	N/D	N/D
TOTAL THC					10.387%	103.876
TOTAL CBD					0.030%	0.298
TOTAL CANNABINOIDS	3				12.178%	121.789

10.387% Total THC

38.90% THC Label Accuracy %

0.030% Total CBD

New Bloom Labs	Certificate of Analysis
Abhaya Holding Co. PO Box 3052	

Sample: 06-04-2024-50782 Sample Received:06/04/2024; Report Created: 06/05/2024; Expires: 06/05/2025

3000mg / 30mL FSD Mext 05292436-01 Ingestible, Tincture

BOOme 1304	0.019 % Total THC	0.019 % Δ-9 THC	
Herst - 052921	10.221 % Total Cannabinoids	10.115 % Total CBD	

Cannabinoids

Clarksville, IN 47130

502-640-3439

abhayaholdingco@gmail.com

(Testing Method: HPLC, CON-P-3000)

Date Tested: 06/04/2024

Analyte	LOD	LOQ	Mass	Mass	
	%	%	%	mg/g	
Δ-8-Tetrahydrocannabinol (Δ-8 THC)	0.0099	0.0148	0.032	0.317	t i
Δ-9-Tetrahydrocannabinol (Δ-9 THC)	0.0099	0.0148	0.019	0.191	1
Δ-9-Tetrahydrocannabinolic Acid (THCA-A)	0.0099	0.0148	ND	ND	
Δ-9-Tetrahydrocannabiphorol (Δ-9-THCP)	0.0099	0.0148	ND	ND	
Δ-9-Tetrahydrocannabivarin (Δ-9-THCV)	0.0099	0.0148	ND	ND	
Δ-9-Tetrahydrocannabivarinic Acid (Δ-9-THCVA)	0.0099	0.0148	ND	ND	
R-Δ-10-Tetrahydrocannabinol (R-Δ-10-THC)	0.0099	0.0148	ND	ND	
S-Δ-10-Tetrahydrocannabinol (S-Δ-10-THC)	0.0099	0.0148	ND	ND	
9R-Hexahydrocannabinol (9R-HHC)	0.0099	0.0148	ND	ND	
9S-Hexahydrocannabinol (9S-HHC)	0.0099	0.0148	ND	ND	
Tetrahydrocannabinol Acetate (THCO)	0.0099	0.0148	ND	ND	
Cannabidivarin (CBDV)	0.0099	0.0148	0.034	0.337	
Cannabidivarinic Acid (CBDVA)	0.0099	0.0148	ND	ND	
Cannabidiol (CBD)	0.0099	0.0148	10.115	101.149	
Cannabidiolic Acid (CBDA)	0.0099	0.0148	ND	ND	
Cannabigerol (CBG)	0.0099	0.0148	ND	ND	
Cannabigerolic Acid (CBGA)	0.0099	0.0148	ND	ND	
Cannabinol (CBN)	0.0099	0.0148	ND	ND	
Cannabinolic Acid (CBNA)	0.0099	0.0148	ND	ND	
Cannabichromene (CBC)	0.0099	0.0148	0.022	0.217	
Cannabichromenic Acid (CBCA)	0.0099	0.0148	ND	ND	
Total			10.221	102.211	

Complete

Key Points

Many patients you care for are ALREADY using cannabis!

Take away the stigma – ask about cannabis use in every interaction.

Patience is required to find the right formulation and dose.

hello@ambercann.com

ambercann.com

Bridgeman MB, Abazia DT. Medicinal cannabis: history, pharmacology, and implications for the acute care setting. P T. 2017;42(3):180-188.

Bruni N, Della Pepa C, Oliaro-Bosso S, Pessione E, Gastaldi D, Dosio F. Cannabinoid delivery systems for pain and inflammation treatment. *Molecules*. 2018;23(10):2478. doi:10.3390/molecules23102478 Kentucky Medical Cannabis Program. https://kymedcan.ky.gov/

Devitt-Lee A. A primer on cannabinoid-drug interactions. Project CBD: 2018. Published 2018 Sept 25; updated 2018 Oct 11.

Liechtenstein, SD. THC, CBD, and anxiety: a review of recent findings on the anxiolytic and anxiogenic effects of cannabis' primary cannabinoids. Curr Addict Rep. 2022 Dec; 9(4): 473-485. doi:10.1007/s40429-022-00450-7

Nathan DL. Setting the standard for cannabis labeling: introducing the universal cannabis product symbol and the Universal Cannabis Information Label. *Cannabis Science and Technology*. 2020;3(6):44-52.

Registered Medical Cannabis Patient Population. Americans for Safe Access. Accessed June 5, 2024. https://www.safeaccessnow.org/patient_population

Roitman P, Mechoulam R, Cooper-Kazaz R, Shalev A. Preliminary, open-label, pilot study of add-on oral delta-9tetrahydrocannabinol in chronic post-traumatic stress disorder. Clin Drug Investig. 2014: 34:587-591. doi:10.1007/s40261-014-0212-3.

Saraiva SM, Martín-Banderas L, Durán-Lobato M. Cannabinoid-based ocular therapies and formulations. *Pharmaceutics*. 2023;15(4):1077.

Watts S. Indica and sativa labels are largely meaningless when it comes to cannabis complexities. Dalhousie News. https://www.dal.ca/news/2022/01/07/cannabis-labels-study-indica-sativa.html

Zylla DM, Eklund J, Gilmore G, et al. (2021). A randomized trial of medical cannabis in patients with stage IV cancers to assess feasibility, dose requirements, impact on pain and opioid use, safety, and overall patient satisfaction. Supportive Care in Cancer, 29(12), 7471–7478.

